Two-pulse Rapid Remote Surface Contamination Measurement

Sandia National Laboratories

Jeffrey M. Headrick, Roger L. Farrow, Scott E. Bisson, Thomas A. Reichardt, and Thomas J. Kulp

Problem

There is a need to remotely (3-m-standoff) sense low-volatility chemical contaminants on surfaces

Applications

- Low-volatility chemical agent (LVA, e.g., VX) detection during: - Decontamination activities
- Battlefield sensing of "denied" territory ■ Radiological material ("dirty" bomb) detection
- **■** Biological agent residue detection

Potential customers and areas:

- DTRA Chemical, biological, nuclear
- DHS Chemical, biological
- DNDO Nuclear

Vehicle decontamination

We are focusing on LVA detection

Existing methods are limited in performance for **CWA** detection

Surface spectrum can mask agent spectrum Signal can fade with low thermal contrast

Raman spectroscopy

- Under development for LVA detection by DOD/DHS
- · Raman is generally a lowsensitivity method

_aser-induced breakdown spectroscopy

distinct atomic spectra

- Agent indicated by carbon
- and phosphorous presence Signal is indistinct and can be masked by emission from surface atoms

Approach

We are developing a pulse-probe method for LVA detection:

(2) Excitation Probe (~246 nm) (1) Fragmentation (3) LIF emission Pulse (266 nm) (250-255 nm) releases PO Method has been demonstrated in the vapor phase – we are extending it to measurement of Surface

Example: Detection of VX

Results

surface agents

Results (cont.)

Detection of four simulants has been demonstrated* on 7 substrates

Oxidized steel Paint + Wood, Cardboard, Aluminum

*Not all quantitatively

Quantitative detection of DIPP on aluminum

 Radial measurement shows uniformity of deposit Also shows anti-correlation between LIF and LIBS

Mitigation of LIBS is a priority

In some cases, LIBS can be modulated and subtracted

Wood + 0.098 mg/cm² DIPP; Cardboard produced similar results Modulation of probe pulse and subtraction of on/off signals allows removal of LIBS, in this case

Difference Wavelength (nm)

Significance

- Pulse-probe method, previously demonstrated in vapor phase, is also applicable to surface measurement
- Method releases and detects PO from multiple organophosphate species on various surface materials A quantitative evaluation is underway to determine the sensitivity of the measurement
- Optical emission caused by surface LIBS is an interfering signal ■ FY10 work will focus on minimizing or eliminating the LIBS background

